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e Introduction to non-commutative spaces and
quantum field theories thereon

e Properties and issues of NCQFTs; and a promising
candidate for a renormalizable NC gauge field model

* Introduce matrix models and emergent gravity
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MOTIVATION

=> incompatibility between GR and QFT

1
Ry — §ng = (Tyw)

lhs: classical Einstein tensor, rhs: ev of an operator
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7
/
i.. ”

=> natural limit in experimental length resolution:
better length resolution requires higher energy,
energy required for resolution of the Planck length
has a Schwarzschild radius of the Planck length

Gh
ACCM ~ \p = =3 ~ 107%3cm

Image source:
http://web.physics.ucsb.edu/~giddings/sbgw/physics.html

Historically, the idea of a "minimal length" was initially introduced in order to smear out
point-like interactions as UV regularization in QFTs (Snyder 1946).
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LLANDAU EFFECT

Consider a charged particle in a constant magnetic field:

o) /ds + e/A dx” /dt (mx -+ eBeZ]xzx])

Hamiltonian obtained by Legendre transformation:

H(az,ﬁ):z—(ﬁ+ezéf)2, p= A, R=mZ=p+ed
m
[i"j,ﬁi] — 2(5‘27 = [ﬁ'z, ﬁ'j] = ’I;GBEZ']'
. . | e
Energy spectrum is that of a harmonic oscillator: FE,, = — (n I 5) (Landau levels)
m
: =) : TN 2y
Spacial non-commutativity ariseswhen B> m = [z’ 1/] = Be v
e

Quantum Hall effect: quantized Hall resistance for low temp. and strong magn. field.
Steps correspond to the number of filled Landau levels.
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WHAT IS A "NON-COMMUTATIVE" SPACE?

Geometric space === > commutative C*-algebra
(according to Gel'fand-Naimark theorem)

points pure states

Non-commutative space < == > Non-commutative C*-algebra
(A. Connes 1994)

Properties of a C*-algebra:

(a,b) — abe A * A= A,
a(b+c) =ab+ ac, a =G (ab)* = b*a”
(a+b)c=ac+ bc, Va,b,c € A (aa + Bb)* = @a* + Bb*

al| 20, lal =0 a=0, |aal = |aflal,

a+ b < [lall +[|b]}, lad]| < {lall]/o]],

a*al| = ||al?, Va e A

commutator of the coordinates has the general form: [2', 2/] = i6” (%),
| A

0Y(z) = const, 09(z) = \)2*, i0Y(z) = (
q

By — o18]) "4
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WEYL QUANTIZATION

assume non-commuting space-time coordinates:

[z, "] = i#"”, = leads to uncertainty relation ANy %|9W\ ~

exists isomorphism mapping between NC algebra and commutative one,
e.g. Weyl map

W A=A, e i
introduce a functions Weyl operator by
. A A d% o g o
WIS = / dz f(z)A(z),  Az) = / (27T>D6W et
fla) =T (WIA@) . TVl = [ de(a)

define derivation operator by [éu, e [5,“ WIf]] = WI0,.f]

AN AN

{ WIfIWlg] = WIf * ]
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GROENEWOLD-MOYAL SPACE

definition of the Groenewold-Moyal *-product:

// dPk de’ >§(k> W Vkl’je—z'(kNJrk;)xﬂ
_ 6%9 Vaxayf(x)g(y) £ g<g;> * f(a:)

r=y

... or with more fields:
dPk de i 2 ki . - f} K0k ;
@) %+ fnla /// L B ) Fon{ )

invariance under cyclic permutations of the integral

/ dPr f(z) x g(x) % h(z) = / dPrh(z) * f(z) * g(x)

and

0
0 fi(y)

/dD“J(fl*fz*---*fm)(:c):<f2*---*fm><y>

7/30



£
o
4
==
(-

N DEFORMED SPACE-TIME

For a field theory in Euclidean space this means:
interaction vertices gain phases, whereas propagators remain unchanged, e.g.:

A A 2 A2 .
= Tr (510 WIOIP + 5 Wlof + Vol

=/d4x G@m*aﬂwm;mw%mqﬁww)

and some Feynman integrals ("non-planar diagrams”) have phases which act
as UV-regulators

1 A e m? 1
- el = K 2(0p)2 ) ~ m? In(0p)?
4/d e mE P (v/m?@P) (6p)? (o)

=> origin of the UV/IR mixing problem

O O O
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S = d4x(%@qu*@”qur%2¢*2+292(@¢)*(f”¢)+%¢*4>, By = (67w

The propagator is known as the Mehler kernel and is the inverse of the operator
(—A+49°F° + m?)

also observe that the action is "Langmann-Szabo" invariant, i.e.:

T |
S[g;m, A, Q] — Q*S[o; s o

and

25 f(o)] =070, f(z),  {2"7 fa)} = 22" f(z)

In 4-dimensional Euclidean space this model was proven to be renormalizable to all orders
in perturbation theory.

Furthermore, there is no Landau ghost and the beta-function vanishes at the self-dual point.
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A TRANSLATION INVARIANT ALTERNATIVE

a2
S = fas (10,0 0%+ 56"~ 0lo) » e ola) + 40"
propagator with infrared damping: G(k) — L = lim G(k) —
@ kE—0
ik
q2 1" Ilp-il’ls.(p) ~ )\2 /d4k ey

((6k)%)" [l# +m2 4 o ]nﬂ
(k)

ea=0: IR div. for n > 2, i.e. integrand ~ (k’Z)_"
p p 1 (k)

. —~— eoqa # (0: finite, integrand ~ SWETESES 0
((6%)%) el R

This model by Gurau et. al., Commun.Math.Phys. 287
(2009) 275, was proven to be renormalizable in 4-
dimensional Euclidean space.
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(AUGE FIELDS ON THETA-DEFORMED SPACES
Star commutator of two Lie algebra valued functions:
1 1
[Oé T 6] = i{aa f 6b}[Ta7 Tb] iy i[aa 7: Bb]{Taa Tb}
==D>> must always consider enveloping algebras, such as U(N), O(N) or USp(2N)

Non-commutative Yang-Mills action:

§ = T8, WIAL] - [0, W[4),] ~ig D[4}, W[4, )
1

— Z/detrN (Fu(z) = F*' () ,
F.,=0,A —0,A,—19lA,* A

It is invariant under the infinitesimal gauge transformations
0o Au(x) = Dya(z) = 0,A(z) — ig[Au(z) 5 a(z)],
60 Fyu(z) = —ig[Fyu(x) § o)
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UV/IR MIXING IN NCGFTs

Need to add gauge fixing and ghost terms:
1
Sh= 1 /d4$trN(FW * F* 4 bx 0"A, + gb*Q — Cx GMDMC)

This action is invariant under the BRST transformations

sA, = D,c=0,A—1ig9/A, %, sc =1igcxc,
SC = b7 Sb — O 3
| sfp=0, Vo
IR divergent terms:
IR ]5 ﬁl/ ~11 . v
H,uy<p) X (52)2 9 p,u = O Pv,

T |

p19p2) pz,,upz ypz,p
2 1= 1’273 (pl )

May try similar techniques as in the scalar case, but gauge symmetry makes matters
more complicated...
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CONSTRUCTING AN IR MODIFIED GAUGE FIELD MODEL

Example: implementing an IR damping similar to the scalar Gurau model.

i a’ 4 1 /w a’

pp2 "
- : 1 - —
D,=46,D", O, ﬁF = igla ﬁF]

Drawback: infinite number of vertices ...

e T
sferserrs < gyl )
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NEW GAUGE FIELD ACTION

Sz/d%

sA,=D,c, SC = 1gc* C, sc=0b, sb=0,
S&/ﬂ/ — B/U/) SB/M/ —O SB,ul/ —%DW, S,QD/W — O

S Q,uvozﬁ — ,Lwozﬂ ) ) J,uvozﬁ — O S Q

"Soft breaking" of the BRST symmetry like in the Gribov-Zwanziger case,
leads to IR damping of the gauge field propagator, i.e. modifying the
theory only in the infrared.
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2 2
Quyo‘ﬁ‘phys Qﬂwaﬁlphys = C‘QI‘phys T /’phys o g/)/ )
2
7 2
W@B‘phys T Wo‘ﬁlphys T (01008 5N55’/O‘>
@ Propagator with IR damping
1 k. k, 0k),.(0k),
Gﬁf(k> K 5 A 6/W N % = f<77 g, kQ)( (?guk()g ) )
2 (1 + (e

Is there a relation between the Gribov problem and UV/IR mixing in NCQFTs in
the sense that solving one of the two automatically solves the other?

Can we derive some kind of “horizon condition” for the Gribov-like parameters?
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HOW TO PROVE RENORMALIZABILITY ?

Need a renormalization scheme that preserves gauge symmetry and works
also in non-commutative space...

The scalar model was proven using multiscale analysis which unfortunately
breaks gauge symmetry in our case.

Algebraic renormalization works well with models which have symmetries, but
only if they are local in the quantum fields.
Can we generalize the scheme to a non-commutative setting?

Could expand for small deformation parameter theta (Seiberg-Witten map),
but we would lose intrinsic properties of NCQFTs such as UV/IR mixing.

At some point, need to also generalize to Minkowski space-time; this involves
new time-ordering rules (some work in this direction has already been done).
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OTHER NON-COMMUTATIVE SPACES

Fuzzy torus:

Fuzzy sphere:

N 0
24, 2] b€ijiT r*l = (2] + 25 + 23)
AA 1 A A 7.
[527 53] _Gz'jkaka 0; = —55131
Kappa-deformed spaces:
[z, 2¥] = i(a!d) — a¥0k) 27, whereelg i =N i
g-Deformation:
1
B4 3] = (—R 5l53)§; !
q

Another approach involves a description of NC spaces in terms of Hopf algebras
with deformed Leibnitz rules ("Twisted" gauge theories, NC generalizations to
Einstein gravity, etc.)
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LOVARIANT COORDINATES ¢t MATRIX MODELS
star gauge transformation of a scalar field: d(x) = w(@) * d(z) * u(z)!

In contrast to the commutative case, =" x ¢(x) does not transform covariantly.

— > define "covariant” coordinates:

[Nﬂ =Ty T gA,J, Ty = ‘9;;/137”

NC Yang-Mills action /d4a3F o [V _i /d4az [X' A X } o [X’“‘ k X”]
v g2 Mo v P
Yang-Mills matrix model: Sy — —I[Pes Xb] (X Xd]nacﬁbd
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EMERGENT GRAVITY FROM MATRIX MODELS

Sy = —=Tr[ X% X[ X, X Naehiva

X = (X”,CI)i), ="17""02m, 1 = [
so that ®(X) ~ ¢'(x) define embedding M?** — R
9 () = 0,20, 3 Ny (in semi-classical limit)

, \/det 0
G = B G = —(T)g”,
Vdet Gy

foron=4: (JH*, +SLe", + (T2, =

14

= —Tr [ X% ¢] [X®, }] Nac
/d4:c det 8- 1{x“,gb}PB{xC, ) el

- / d'zy/det 01 08,20, ¢ 077 0)x°0s ¢ ac
_ / d'2\/det Gy G0, 30,0
(cf. Class.Quant.Grav. 27 (2010) 133001)
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INTRODUCING THE IKK'I MODEL

Sikxr = Tr ([X%, X*] [Xo, Xp) + VDV) |
DY =, [X, 9], {Yar W} = 20

<

IKKT matrix model is supersymmetric and expected to be renormalizable
- cf. Nucl.Phys. B498 (1997) 467 .

Majorana-Weyl spinor U = CU?, is invariant under SUSY:

&mzfﬂxaxﬂh%y¢; FLX® = ey
6 = ¢, 5°X%=0

Further symmetries:

X s U'XU, v U U, U U i
X — A(g)iX®, WU, — 7(g)°Us, g€ SO(D), rotations,
X% —= X%+ "1, " eR, translations
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Skt = Tr ([X?, X°] [Xao, X + Uy, [X, U])
Originally proposed as non-perturbative definition of type IIB string theory,

Seems to provide a good candidate for quantum gravity and other

fundamental interactions, i.e.
o _ (X — 0m A (XH)
K O (XH)

Here, we consider general NC brane configurations and their effective gravity
in the matrix model,

Assume soft breaking of SUSY below some scale A and compute the effective
action using a Heatkernel expansion.
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Sy = TrUTPU = Tr¥ly, [ X%, U]
e TA] = /d\Pd\IJTe_S‘I’ = (const.) exp (%Tr log(lf))

DU = 3 [X (X0, 0] = (B + V)

Consider fermions coupled to NC background

Matrices X@: perturbations around Moyal quantum plane
=>> introduce NC scale Ayc=¢"

0
[ X#, XV] = i =t (1)
0

Xt = (X4 + A, ¢) = (X = 074y, Ado0)
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HEATKERNEL EXPANSION

DoV = 1, [X*, [ XY, U] = —AyEG0,0,¥

[XH, X7 = (0" + ), [X*, ¢ = i0" D, ¢'
FH = —0"(0,A, — 0, A, — 1| Ay, Ao},
Dy,¢ = al/¢ o i[Aw ¢]

Consider a Duhamel expansion:
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In contrast to previous work, we consider a ,semi-classical“ low energy
regime characterized by

e(p) = p’N’/Aye < 1

Can expand UV/IR mixing terms as

TSRS ame(p)”
m>0
Avoids pathological phenomena which would appear if

A >0 and Ane fixed

Expansion in 3 small parameters:

2 2

rnt S [0 (doridor &)

n,l,k>0
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EFFECTIVE NC GAUGE THEORY ACTION

Weyl quantization map: |p) = %" € A

P.lp) = ip,u|p) with P, = —if ) [X", ]

[eik)_(jeil)_(} S — (%91) i(k+0)X []D0|p> G:W/p’upy|p> ]

Can now compute the terms of the Duhamel expansion order by order:

4

PR daTr(Ve O‘w%)e_azi/\g

er—l
\8

(07 A4

do / dt’ Tr (Ve_t/D%’Ve_(o‘_t/m%) e ol +...
0

H= (=

0\8
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(zAUGE INVARIANCE OF EFFECTIVE NCGF

Adding up first 3 order contributions leads to the following order A* terms:

ATl .
I'ya(A, @, p / ( *} D' Dgep;
A ( > 16ANC (27T)2f B

1 NV NPo noo’ NN
— 500 F 87 By + (077 Fo)(FOFO))

nv o ) L= v Q {
= 2 a0, 0501 + 50" )" 0 D
+h.o.)

— > These terms are manifestly gauge invariant

‘ Free contribution:

©¢)

- 1 dov _alp?_AiC ATrlls
D[X] = —oTr | =g i -
RS / : 1 3 / (27r)2\f

0%
0

=> Along with general geometrical considerations, this suffices to
predict some loop computations
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EFFECTIVE MATRIX MODEL ACTION
consider [ [X] = TrL (X%/L), L=A/Ag

Commutators correspond to derivative operators for gauge fields

Leading term of eff. action can be written in terms of products of

Jo:=i0%gy = [X% X, TtJ=J*=0

::> Most general single-trace form of effective potential
+ input from free contribution to the effective action:

[[X] = TiV(X) + ho,

1 s 1 [ drae
() = 5| _TIJ4+;<TIJ2>2) ~ =3 [
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SO(D) INVARIANCE OF GENERALIZED MM

Can reproduce gauge sector of induced result by a

= semi-classical analysis with vanishing embedding fields:
1 /\ 1 e
gC (1 + HWFW -+ Z<9F>2
V(T2 = T4 gy

%(HF)(FQFQ) - O(F4))

Effective action can be written as a generalized matrix model
with manifest SO(D) symmetry.

— > Can be further generalized to include curvature terms, e.g.:

d4
/(27;;2\/&/\( > (R‘i‘ (ANCQ_UQMPGUQRMpn& £ 4R) <K C/@ua_aluo_)

Such terms appear in the semiclassical limit of higher order
matrix terms.
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CONCLUSION

Have discussed properties and problems (such as UV/IR mixing) of non-
commutative quantum field theories, as well as renormalizable scalar models.

Constructed a promising candidate for a renormalizable NC gauge field model,
but need to prove renormalizability to all orders.

Introduced matrix models, especially the IKKT model and its properties, such
as emergent gravity.

Computed the effective fermion action, first from NC field theory, then from the
matrix model point of view.

Many interesting open questions.
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